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LETTER TO THE EDITOR 

Self-avoiding walk model for proteins: a real space 
renormalisation group treatment 

A Christou and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 9 January 1986 

Abstract. Diffusion on the model for proteins introduced by Helman, Coniglio and Tsallis 
(HCT) is discussed using real space renormalisation group ideas. We perform cell-to-cell 
transformations in two dimensions for both the HCT model and the self-avoiding walk. 
T h e  latter system is quasi-linear and so we expect trivial diffusive behaviour given by 
d ,  = 2d,  = f. Diffusion on the HCT model however is complicated by the possibility of 
jumps across nearest-neighbour (hydrogen bond) 'bridges': our results are not consistent 
with the prediction that d ,  = 2 for the HCT model; rather they support the assertion that 
d,HCT is close to but slightly greater than dzAW.  

In this letter we investigate diffusion on a model for proteins introduced by Helman 
et a1 (1984). We use a single cell real space renormalisation group method to determine 
the asymptotic time-dependent behaviour of a de Gennes (1976) myopic ant on the 
non-trivial HCT model. 

Interest in the problem arises in the context of spin-lattice relaxation rates of the 
Fe3+ ions in low spin haemoproteins and ferredoxin. The dominating two-phonon 
process leads to a rate 1/ TI related to the temperature T by the following scaling form: 

1/ Ti a T3+2df (  T /  0, d,) (1) 

with f3 the Debye temperature and d, the spectral dimension (Alexander and Orbach 
1982) for the proteins. 

The experimental work of Stapleton et a1 (1980) and Allen et al (1982) finds the 
following low temperature behaviour for 1/ TI: 

1/ Ti a T". (2) 
This observation is consistent with (1) since in an appropriate low temperature regime 
the scaling function f takes a constant value and so the T dependence of 1/ Ti is given 
simply by 1/ TI a T3'2ds. 

These authors find n =6.3 for haemoproteins and n = 5.67 for ferredoxin. In 
attempting to reconcile (2) with (1) Stapleton et a1 equated d,  in (1) with the fractal, 
or Hausdorx dimension (Mandelbrot 1982) of the protein, df. This relates the radius 
of gyration of the protein (Rf) to the number of aipha-carbons by the power law 

(RJ - (3) 
The numerical value for df for the proteins is accessible from the x-ray scattering data. 
From this, Stapleton et a1 obtained df = $for ferredoxin and dr= for the haemoproteins. 
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These results are consistent with the relaxation rate data for n and also with the Flow 
theory result for the excluded volume problem (self-avoiding walk) d f =  ( d  + 2 ) / 3  for 
d = 2 , 3  respectively. 

Now, information on the dynamic excitations on general fractal spaces may be 
obtained by considering diffusion on the network. The diffusing particle is represented 
by a ‘myopic ant’. Such a random walker successfully takes a step at every time 
interval, as opposed to a blind ant which, if it discovers its chosen direction to be 
blocked, will remain stationary until the next time interval when it tries again. 

When considering diffusion on fractals it is important .to distinguish between two 
limiting regimes, If the RMS displacement of the ant is (R , )  then in the regime 
1 << (R,)<< (Rf) diffusion phenomena are self-similar and so are amenable to treatment 
using RSRG. In this regime (R,)  is given asymptotically by 

(R , )  - t‘ld* (4) 

for fixed though large N, where t is the time or, equivalently, the number of steps of 
the ant. Expression (4) defines the dimensionality of the walk d,. On fractal space d ,  
is not 2 in general but takes on some anomalous system-dependent value. In the regime 
where the number of steps t of the ant is large compared to the number of bonds of 
the system N, (R,)  will saturate to 

( R,) - N ” d f .  

These regimes are bridged by a crossover region in which (R , )  is given by 

(RJ  - N 1 l d f g (  N e /  r )  

where g is a universal scaling function and 0 is the crossover exponent. 
We confine our attention to the self-similar limit 1 << (R , )  << ( Rr). 
According to the Alexander-Orbach theory, knowledge of d ,  yields the scaling 

behaviour of the low frequency density of states p ( w ) a  wds-‘ through the relation 

d , =  2 d f / d , .  (7 )  
Consequently a simple SAW model for the proteins leads to a contradiction. A 

straightforward scaling argument (see footnote in Helman er al (1984)) shows that for 
the quasi-linear SAW d ,  = 2 d r  and so from (7) one obtains d , =  1 in all dimensions. 
This result is inconsistent with the assumption of Stapleton et a1 (1980), d,  = d f .  In 
order to overcome this difficulty Helman er a1 introduced conducting but massless 
nearest-neighbour crosslinks into the SAW model. They predicted that, provided the 
density of crosslinks or bridges was sufficiently high, the ant would ‘see’ the embedding 
Euclidean lattice and diffuse as if on Euclidean space. Their objective was therefore 
to create a protein model with SAW fractal dimension but with d ,  = 2, thereby restoring 
consistency with the experimental results. The ‘massless bridges’ were to be interpreted 
as hydrogen bonds.. 

Subsequent numerical work on the HCT model in two dimensions (Yang et a1 1985, 
Chowdhury and Chakrabarti 1985) however does not support the suggestions of 
Helman et al. Yang er a1 obtain d ,  = 2.6 and indicate that they would expect d ,  = 2 d f =  $, 
as for the SAW, with more accurate calculations. Chowdhury and Chakrabarti however 
obtain an even higher result d ,  = 2.78. Furthermore the latter authors argue that d ,  > 
strictly, this being a direct consequence of the ant’s steps over the bridges which, in 
terms of chemical distance travelled measured along the chain, constitute Levy flights. 



Letter to the Editor L359 

We attempt to clarify the situation using analytic renormalisation techniques. We 
consider the stochastic master equation governing the motion of the ant. Assigning a 
probability Pn( t )  that the ant is at site n ofthe  model at time t subject to Pn(0) = Sn,,, 
we obtain the time evolution from 

where W is the transition rate for the ant to step from a site onto a particular nearest 
neighbour. The parameter V is simply the step rate given by WZ, with 2, the local 
coordination number. The summation is over 2, occupied nearest neighbours. 

During the renormalisation process, the embedding square lattice is mapped onto 
one isomorphic to it together with an accompanied dilatation of space by a factor b 
and elimination of short-range SAW degrees of freedom. The motion of the ant on the 
renormalised system is governed by an equation analogous to (8) but with a 
renormalised hopping rate V'. The asymptotic, scale-invariant, phenomena are 
observed at a critical rate 0 < V = V = V* < 00. Clearly we expect V* = 1 since our ant 
is myopic, not blind. 

In deriving the explicit real space renormalisation group recursion relation for V, 
the step 'fugacity' (Stanley et a1 1982) for the random walker, it becomes evident that 
one has to introduce a second fugacity K, associated with each step of the SAW. The 
parameter K, together with its RSRG transformation K '  = & ( K ) ,  characterises the 
underlying fractal space. Similar approaches have been used in studying random walks 
on percolation clusters (Sahimi and Jerauld 1984), lattice animals (Family 1983) and 
Witten-Sander aggregates (Christou and Stinchcombe 1986). 

Firstly we derive the transformation for K following de Queiroz and Chaves (1980) 
and Redner and Reynolds (1981). One generates the set of SAW starting in the lower 
left corner of a b x b cell and finishing on one of the b sites at the top of the cell. 
Each traversing SAW configuration of n steps is weighted by a factor K". A grand 
canonical partition function ZiAW( K )  is defined for the cell thus: 

where C b ( n )  is the number of spanning SAW of n steps on a b x b cell. We set 
&,(K)=Z,bAw(K).  In general, the b x  b cell is mapped onto a b 'x  b' cell via a 
'cell-to-cell' transformation (Reynolds et ai 1978), the renormalised partition function 
being given by 

In particular, for a cell-to-bond transformation, Z!:&( K') = K'. If we stipulate that 
the partition function be conserved under renormalisation we have an implicit transfor- 
mation K + K'. This has a critical fixed point at 0 < K *  <CO where one evaluates the 
eigenvalue of the linearised transformation, Ak = (aK'/aK),*,  from which follows the 
fractal dimension of the SAW, dr, in the usual way. 

The procedure is analogous to that outlined above when one introduces random 
walks on the HCT models. Here, we define a new partition function Zb,(K, V) given 
for a b x b cell by 

zb,(K, V ) = C  G ( n ,  t)K"V'[(l/zo)(l/Zl). . . (l/zt-1)] ( 1 1 )  
n, t 
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with Cb(n, t )  being the number of random walks of t steps spanning each HCT model 
configuration of n steps and zi being the coordination number of the site visited by 
the ant after i steps. The factor [ ( l / z o ) ( l / z , ) .  . . ( l /z , - , ) ]  arises from the fact that the 
weight associated with a particular ant step from a site a is V/z,. where z, is the local 
coordination number of a. Upon renormalisation the transformed partition function is 

For b'= 1,  we set Z:G'(K' ,  V')= K ' V .  
Evidently, for a SAW without crosslinks, this 'kinetic' view (Nakanishi and Family 

1984) of the random walk may be replaced by the more familiar 'static' interpretation 
V/2+ W as the local coordination number is constant. 

A problem arises associated with the truncation of the infinite series (1 1) and (12). 
We note that at the critical fixed point (K*, V*) only random walks of length t d ld- 
are important (see, e.g., Sahimi and Jerauld 1984), 6 being the end-to-end distance. 
However, given that all we know of d ,  is 

d f s  d W d 2 d ,  (13) 

our choice of truncation point will necessarily be rather ad hoc. In our computations 
we first treat only walks satisfying t S 12, this being the mid-point of the interval (13) 
since we know that df= !. We then repeat the process considering longer walks t d 58/3, 
The results for d ,  for the HCT model are affected significantly by the choice of truncation 
point. However, if we repeat the renormalisation for random walks on SAW (with no 
cross-linking allowed) we observe that the value dzCT/d:Aw is much less affected by 
the truncation rule used. 

We derive the recursion relations for the simplest of transformations b = 2, b' = 1 
for the HCT model. Here, from de Queiroz and Chaves (1980), 

K ' =  K 2 + 2 K 3 +  K 4  (14) 

and enumerating all random walks such that t S [*I3, 

K '  V' = K 2 ( i  V2 + 4 V4 + 4 v6) + K 3 ( a  V3 + $ V5 + 
+ K 3(a V3 + $ V5 + 

V') 

V') + K4((a V2 + & V4+ v"). 

We define A k  = (aK'/aK),* and A, = (dV/aV).*,,*. One obtains 

df=log hk/log b 

and 

(16) d ,  = log A,/log b. 

Hence for the b = 2 cell-to-bond transformation (with t s 58'3) for the HCT model 
one obtains ( K * ,  V*) = (0.466,0.961) and df = 1.398 and d,  = 2.100. A b = 2 cell-to- 
bond transformation has also been very recently applied to the HCT model by Chow- 
dhury (1985) who, though only considering walks up to t = t2 and not properly allowing 
for the V/z, factors required by the governing diffusion equation, obtained very similar 
results in this small cell calculation. 
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The corresponding recursion relations for random walks on the SAW (in the static 
interpretation) are 

K ’ =  K 2 + 2 K 3 +  K 4  

K ‘ W =  K 2 (  W2+2W4f4W6)+ K 3 (  W3+3 W5+8 W’) 

+ K 3 ( W 3 + 3 W 5 + 8 W 7 ) + K 4 ( W 4 + 4 v ) .  

This system of equations yields ( K  *, W*) = (0.466,0.577) and df = 1.398 and d,  = 2.028. 
Similarly, for a cell-to-cell transformation 1 < b‘< b, one obtains for K ,  say, an 

implicit transformation (Reynolds et a1 1978) 

K ’ ( 6 )  = & , [ R b ! ( K ’ ( b ‘ ) ) ]  E &,/b’( K ‘ (  6 ’ ) )  (18) 

given in terms of the cell-to-bond transformation function K ’ ( 6 )  = R b ( K ) .  The Value 
of K at which K ’ ( b )  = K’(b ’ )  or equivalently & ( K )  = R b r ( K )  corresponds to K ” .  It 
then follows that the fractal dimension, df, is obtained from the relation 

Here Ak(b)  is the K eigenvalue of the b x b cell-to-bond transformation. However, it 
is evaluated at the fixed point (K*, V*) of the cell-to-cell transformation. Similarly 
for V’ 

V’( b )  = Gb( GbJ( VI( b’)) G b / b f (  V’( b’)) (20) 

where Gb is the V cell-to-bond transformation function given by V’= G b ( K ;  V )  = 
Z!AW( K ,  V ) /  K ’ ,  and the inverse is taken treating K only as a parameter. 

From (20) it follows that 

where the eigenvalues A, are again evaluated at the cell-to-cell fixed point. 
A now familiar problem with small cell RSRG is associated with cell interfacing. 

This phenomenon leads to errors both in the fixed points and in the eigenvalues. It 
is reasonable to expect, however, that such interfacing problems will vanish as b +CO 

for a cell-to-bond transformation and b + CO together with b/ b’ + 1 for a cell-to-cell 
transformation (Reynolds et a1 1978, Redner and Reynolds 1981). In principle there- 
fore, by evaluating that RSRG recursion equations for larger b and also for b/ b’ + 1 
one will obtain proved estimates for the exponents. Assuming that the resulting 
sequences of exponents are monotonic in b it would then be possible to obtain reliable 
extrapolations to b + 03 (Reynolds et a1 1980). 

We therefore proceed to evaluate the larger cell transformations and the results up 
to b = 6 are summarised in tables 1 and 2. The fixed point K *  and exponent df are 
given by Redner and Reynolds. For the HCT model one must generate all spanning 
SAW configurations and for each one enumerate exactly all random walks, allowing 
for steps over nearest-neighbour bridges, with t S t2 and then repeat for t s [ ‘ I 3 .  For 
a b = 4 cell, for example, with r s 5’” one must enumerate random walks of up to 
t = 73 steps for each of the 649 spanning HCT SAW. The corresponding calculation for 
a b = 5 cell would involve counting and weighting the spanning random walks with 
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Table 1. Results of the cell-to-bond and cell-to-cell RSRG for random walks on the HCT 
model for proteins. The upper number in each pair of figures corresponds to having 
enumerated exactly all random walks on the HCT model of length t such that f G t2; the 
lower ones are for I S  ['I3. 

b' 

b 1 2 3 

2 v* 1.128 
0.961 

d:* 1.815 
2.100 

3 v* 1.051 
0.947 

d tCT 1.879 
2.237 

4 v* 1 .WO 
1.013 

d t f f  1.927 
2.368 

1.009 
0.941 
1.998 
2.458 
1.082 1.135 
1.021 1.060 
2.042 2.128 
2.680 3.153 

Table 2. Results of cell-to-bond and cell-to-cell RSRG for random walks on SAW. The 
upper number in each pair of figures corresponds to having enumerated exactly all random 
walks on the SAW with number of steps I such that I S  t2; the lower ones are for I c 

b 1 2 3 4 5 

2 w* 0.650 
0.572 

2.038 
3 W* 0.581 0.538 

0.531 0.512 
W I .748 1.692 

2.117 2.136 
4 w* 0.553 0.53 1 0.526 

0.520 0.512 0.511 
dzAw 1.848 1.910 2.205 

2.241 2.361 2.663 
5 w* 0.539 0.526 0.523 0.521 

0.514 0.510 0.509 0.508 
W 1.916 2.022 2.271 2.379 

2.357 2.521 2.813 3.001 
6 W* 0.530 0.522 0.519 0.518 0.515 

0.510 0.508 0.507 0.506 0.505 

2.438 2.625 2.901 3.077 3.169 

d$Aw 1.784 

dSAW 

dSAW 

d$Aw 1.960 2.086 2.313 2.401 2.442 
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number of steps t up to t = 141 for 36 368 spanning configurations. This required too 
much CPU time for our algorithm: a 180min run on a VAX 11/780 was insufficient. 
However, knowing the transfer matrix elements T , ( K )  (Redner and Reynolds 1981), 
where T, is the weight associated with SAW spanning a b x b cell from the origin to 
the ith ( i  = 1 , .  . . , b) site on the uppermost layer of the cell, one is able to carry out 
the b = 5 and b = 6 transformations for SAW without crosslinks for which diffusion is 
confined to the quasi-linear chains, i.e. not dependent on SAW conformation. This 
serves as a good check for the reliability of the lower b exponents for the SAW and 
hence for those of the HCT model. 

The results for d:CT and d%Aw obtained from the small cells considered are not 
sufficiently smooth to allow reliable extrapolations. It is possible that these non- 
monotonicities are the effect of pathologies of the RSRG ‘interfacing’, problems which 
might not vanish in the limit b+m. The probability that a spanning SAW terminates 
on a particular cell site is l / b  (in d =2) .  Thus the ‘corner rule’ used would indicate 
that interfacing problems indeed worsen as b increases. However, if one notes that 
the corner rule may be interpreted (Redner and Reynolds) as representing the problem 
of a SAW in a wedge (apex angle a f 4) with one end of the SAW fixed at the apex then 
we are left with an example of the problem of SAW in confined geometries. Scaling 
approaches (see de Gennes 1979) indicate that the confining geometry becomes 
irrelevant, as b + 03, to the critical behaviour. We therefore expect the accuracy of the 
exponents df and d, to improve as larger cells are considered. This may be done using 
Monte Carlo renormalisation. As only relatively few spanning SAW configurations are 
sampled, longer random walks may then also be enumerated. We also expect the 
dependence of the exponent d,  on random walk length to vanish as t increases. 

In table 3 we show d:“’(b/ b’)/d:Aw(b/ b’) for various cell-to-cell transformations. 
The predictions of Helman et a1 (1984) would require dtCT/dtAW=0.75. Our results 
are not consistent with this prediction. They are, however, in qualitative agreement 
with the Monte Carlo work of Yang et a1 (1985) who obtained dzCT/diAw = 0.97 and 
that of Chowdhury and Chakrabarti (1985) who obtained dzCT/d:Aw= 1.04. Despite 
the observed non-monotonic behaviour of the exDonents. however. our results would 
seem to favour the argument put forward by Chowdhury and Chakrabarti for dzCT> 
ASAW 
u w  

In conclusion therefore we have developed and implemented a two-parameter small 
cell RSRG for random walks on SAW, for which diffusion is trivial, and on the model 

Table 3. The results for d t m (  b /  b’ ) /d tAw(  b /  b’)  for various cell-to-cell transformations. 
Monte Carlo work of Chowdhury and Chakrabarti indicates dtm/dtAw = 1.04. The upper 
number in each pair of figures corresponds to evaluating all random walks with r c 5’; the 
lower ones are for r s t8I3.  

b’ 

b 1 2 3 

2 1.0173 
1.0306 

3 1.0747 1.1806 
1.0563 1.1509 

4 1 .M28 1.0688 0.9654 
1.0538 1.1348 1.1840 
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of Helman et a1 for proteins. Our results are not consistent with the requirement that 
dcCT/d:Aw = 0.75 as speculated by Helman et al. However they do seem broadly in 
agreement with the available numerical data which suggest that dcCT/dzAw = 1. On 
the other hand, they would appear to support the conclusions of Chowdhury and 
Chakrabarti that d,HCT> dtAw. In order to establish whether the HCT models are in a 
distinct dynamic universality class to SAW one would have to introduce a new step 
fugacity X for jumps across the bridges and determine whether the variable is relevant 
in the RG sense. Strictly, one would expect dzAw to be affected by the presence of 
crosslinks only if these links were distributed along the SAW in some hierarchical 
fashion. This is in fact what seems to happen as loops created by crosslinks have 
smaller loops within them and so on all length scales leading to the scale invariance 
that we have exploited in our renormalisation scheme above. 

Finally, we point out that saturation effects for the non-scale-invariant limit where 
the number of random walk steps t is much greater than SAW length N are not 
observable within this RG framework since it is implicit that the SAW or HCT model 
remains invariant under space dilatations. 

We thank Dr P M Duxbury for helpful discussions. The support of the SERC, in the 
form of a Research Studentship, is gratefully acknowledged by AC. 
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